
LLNL-CONF-426380

FPGA based Real-time Network
Traffic Analysis using Traffic
Dispersion Patterns

Khan, Faisal, Gokhale, Maya

March 26, 2010

Field Programmable Logic and Applications
Milano, Italy
August 31, 2010 through September 2, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

FPGA based Network Traffic Analysis using Traffic
Dispersion Patterns

Faisal Khan
Lawrence Livermore National Labs

fnkhan@ucdavis.edu

Maya Gokhale
Lawrence Livermore National Labs

maya@llnl.gov

Chen-Nee Chuah
University of California, Davis

chuah@ucdavis.edu

Abstract—The problem of Network Traffic Classification
(NTC) has attracted significant amount of interest in the research
community, offering a wide range of solutions at various levels.
The core challenge is in addressing high amounts of traffic
diversity found in today’s networks. The problem becomes more
challenging if a quick detection is required as in the case of
identifying malicious network behavior or new applications like
peer-to-peer traffic that have potential to quickly throttle the
network bandwidth or cause significant damage. Recently, Traffic
Dispersion Graphs (TDGs) have been introduced as a viable
candidate for NTC. The TDGs work by forming a network
wide communication graphs that embed characteristic patterns
of underlying network applications. However, these patterns need
to be quickly evaluated for mounting real-time response against
them. This paper addresses these concerns and presents a novel
solution for real-time analysis of Traffic Dispersion Metrics
(TDMs) in the TDGs. We evaluate the dispersion metrics of
interest and present a dedicated solution on an FPGA for their
analysis. We also present analytical measures and empirically
evaluate operating effectiveness of our design. The mapped design
on Virtex-5 device can process 7.4 million packets/second for a
TDG comprising of 10k flows at very high accuracies of over
96%.

I. INTRODUCTION

Network Traffic Classification (NTC) is keystone in a wide
range of network applications such as detection of anomalies
and security attacks, identifying new applications, and traf-
fic engineering. A number of critical network management
decisions such as blocking or re-routing application traffic,
or detection of anomalies, require real-time network traffic
analysis. A high-quality network measurement tool is crucial
in judiciously making such decisions.

The authors thank John May at LLNL and Soshant Bali at UC-Davis for
their useful feedback and suggestions in the course of this work.

Disclaimer: This document was prepared as an account of work sponsored
by an agency of the United States government. Neither the United States
government nor Lawrence Livermore National Security, LLC, nor any of
their employees makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed herein do not necessarily state or reflect those
of the United States government or Lawrence Livermore National Security,
LLC, and shall not be used for advertising or product endorsement purposes.

Auspices: This work performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344. IM release number (LLNL-CONF-426380)

Recent work on NTC algorithms and techniques has yielded
a flurry of proposed approaches. The methods can be grouped
by their level of observation: (a) packet level, such as tradi-
tionally used TCP port numbers [1] or packet inspection for
application signatures [2], (b) flow level statistical techniques
that classify flows based on flow duration, number and size
of packets per flow, and inter-packet arrival time [3], [4], and
(c) host level, such as host-behavior approaches [5], that form
a social interaction pattern of hosts before classifying their
traffic.

The above techniques fall-in at various levels of accuracy
and feasibility. The packet level techniques, though being more
accurate, are increasingly facing difficulties with applications
camouflaging their communication, for instance by employing
encryption. They also involve significant privacy and legal
concerns. The aggregation of packets into flows and grouping
of flows over a host offer further insights but at the cost of in-
crease in computational requirements as well as classification
latency.

The aggregation of network wide host communication pat-
terns in a “who talks to whom” Traffic Dispersion Graph
(TDG) has been recently proposed as a natural extension in
NTC schemes [6]. The ‘who’ and ‘whom’ in the graph are
the communicating hosts, or graph nodes, while the edges
between them define a type of communication that takes place
between them. The TDGs have been employed for identifying
network intrusion [6], worm propagation [7] and more recently
for application identification, such as peer-to-peer (P2P) traffic
[8], [9]. Depending on the requirements, such as quickly
identifying worm, the graph analysis needs to be fast enough to
limit the worm effects and mount a response. However, little
attention has been given to the details of a real-time TDG
implementation and analysis.

Recently, FPGAs have been seen to support real-time net-
work traffic measurements [10]. However a real-time and
accurate maintenance of a complicated data structure such as
a graph is not a trivial problem, especially in hardware, as
it poses enormous computational and resource requirements.
They further require visual interpretations that may involve
human intervention. Instead, if the graph can be summarized
using graph-metrics such as amount of connectivity, size etc,
it can lead to a quick evaluation of the TDGs. Such graph
metrics, which we call Traffic Dispersion Metrics (TDMs),
have also been the focus of previous studies.

TDGs have traditionally been processed offline, where the
analysis has a full view of the dispersion graph. A real-time
analysis of a TDG requires a complete rethink on what needs
to be collected in the TDG and its associated cost/benefit
analysis, specifically, the accuracy and the resource budget
trade offs. In this paper, we provide some answers to these
questions and present a hardware implementation supporting
real-time evaluation of TDGs. We provide analytical and em-
pirical measurements for determining accuracy and throughput
that define the operating effectiveness of our solution. We have
mapped our solution to Xilinx Virtex-5 device where it is seen
to offer superior accuracy of over 96% having a throughput of
7.9 million packets/second while utilizing just 10% of logic
and 73% of device RAM resources.

II. BACKGROUND

A Traffic Dispersion Graph (TDG) is a directed graphical
representation of various communications occurring among a
set of entities. These entities in an IP network could be hosts
with distinct IP addresses forming nodes in the graph while the
edges represent interaction patterns among them. Thus one of
the core question in the TDGs is what defines the edge, or an
edge-filter. The fundamental question can be answered while
taking into account the context of the study. An edge could be
establishment of a connection, like TCP, between two entities,
exchange of certain number of packets or bytes, a specific
pattern in the packet payload or communication over a port
or set of ports. These studies can result in different types of
applications like identifying a new application over a port or
spread of a worm with a specific signature.

We hereby present a design that is self-contained in that
it does not need to maintain a TDG, but rather TDMs are
maintained in real-time. The idea is to identify a set of TDMs
that are easy to compute in hardware while at the same time
representative enough to characterize the graph in a passing
data stream. We make use of some of the metrics discussed
in [6].

TDMs can be classified as online or offline. The online
metrics can evaluated in passing data-streams whereas offline
metrics need full view of a graph for their accurate evaluation.
Some of the metrics are:

1) Degree: The degree of a node, or a unique address, in
the graph represents its number of edges. Since TDGs are
directed, an InDegree represent number of incoming edges,
or connections, while an OutDegree represents number of
outgoing edges, or connections that the node initiates. Some
associated measures include average and maximum degree in
the TDG. A high InDegree represents popularity of a host
while a high OutDegree may represent diversity of communi-
cation of a client.

2) In-&-Out: The In-&-Out, or InO, measure represents the
number of nodes that have both incoming and outgoing edges,
or in other words, they act both as initiator and destination of
communication in a TDG. As we will see, the InO measure
has a strong correlation with P2P type applications.

3) Giant Connected Components (GCCs): The GCC mea-
sure defines the percentage of nodes that are connected to-
gether in the graph, or the sizes of latent sub-graphs within a
TDG.

4) Depth: The depth of a node in the TDG defines the
length of a sequence of nodes that are communicating with
each other. The measure is therefore useful in quantifying the
spread of communication. For instance, a high average depth in
a TDG may represent contagious nature of some application,
typically a worm.

The Degree, In-&-Out and Density in the above are online
TDMs while the rest require an offline evaluation.

A. Bloom Filters

Bloom filters are space-efficient probabilistic data structures
that are used to test if an element (key), X , is a member of
a set. It works by having an array of size m bins that are
indexed using k hash functions, each generating a hash value.
To program the element X in the set, k bits corresponding
to the k hash values are set in the array. The membership
query process works in reverse by checking to see if all the
k values corresponding to an element were set. If at least one
of the k values is not found to be set, then the element is
declared to be a non-member of the set. However, if all the
values are seen to be set, the membership is declared true
with certain probability. This false positive probability comes
from the fact that the k values can be set by any of the already
programmed n elements. Thus a Bloom-filter have a zero false
negative (fn) but a limited false positive (fp) probability. This
false probability is expressed as

fp = [1− (1 − 1

m
)nk]k ≈ (1 − e−nk/m)k (1)

It can be seen that the rate of false positives in a Bloom-
filter can be reduced by having appropriate values for k and
m for a given n. An optimal false positive probability yields
the following relation between k, m and n

k = (m/n)ln2 (2)

that actually corresponds to

fp = (1/2)k (3)

Similar to false positive, one can also derive true negative
(tn) probability of the Bloom-filter as

tn = (1− 1

m
)nk

2 ≈ e−nk2/m (4)

that gives us the probability of a ‘Yes’ answer from the
Bloom-filter (true and false positives) as

py = tp + fp = 1− tn = 1− e−nk2/m (5)

Bloom filters are extended to support counting operation
by extending individual bin sizes from a single bit to a p-
bit counter. Such Counting Bloom Filters (CBFs) can record
number of times an element X was programmed into the filter.

Name Date/Time Type Duration Unique Nodes 5-tuple Flows Avg. Utilization Mbps
WIDE 2006-03-03/13:00 Backbone 2h 1,041,622 4,670,259 31.0(9.7)
OC48 2006-01-15/10:00 Backbone 1’02h 2,945,800 22,109,681 589.0(127.8)

TABLE I
THE SET OF PUBLICLY AVAILABLE TRACES USED

Rule Description
A packets > 0
B packets > 1
C packets > 1 &

avg pkt-size > 60

TABLE II
RULE EXPLANATION

0

10

20

30

40

50

60

70

80

90

100

P
e

r
c
e

n
t

o
f

N
o

d
e

s

> 999

100 to 999

9 to 99

5 to 8

3 to 4

2

1

Fig. 1. InDegree Distribution

0

10

20

30

40

50

60

70

80

90

100

P
e

r
c
e

n
t

o
f

N
o

d
e

s

> 999

100 to 999

9 to 99

5 to 8

3 to 4

2

1

Fig. 2. OutDegree Distribution

0

5

10

15

20

25

P
e

r
c
e

n
t

o
f

In
O

 N
o

d
e

s

Fig. 3. InO Distribution

The insert operation then involves incrementing the k counters
instead of setting them up. The presence of an element X
in CBF then involves checking that all the k hash counters
associated with the element have non-zero count values.

III. QUANTIFYING TDGS

The focus of this work is in real-time quantification of
TDGs. We therefore focus on TDMs that can be evaluated
online such as Degree and InO measures. We use a port based
edge filter that goes along with the lines of the study, i.e, to
detect the type of an application on a given port. However,
as opposed to previous studies where the port based filter is
enriched with a three way TCP handshake [6], we experiment
with simpler edge filters. The three-way handshake occurs
end-to-end at the application-layer in an OSI model and is
quite resource expensive to be detected at our lower network-
layer. We suspect that simpler filters can yield equally efficient
classification rules while reducing hardware resource budgets.

We use a number of ports belonging to legacy applications,
such as port-80 for HTTP, port-25 for SMTP, port-53 for DNS,
and ports-6699/6257 for a P2P WinMX application. We used
the data-traces shown in Table-I in our experiments. The port
based edge filters were next enriched using simple rules such
as edge on first packet, edge if there is more than 1 packet, and
edge if there are more than a packet and the packet sizes are
greater than 60 bytes, shown in Table-II. The rationale behind
them is to incorporate the handshake information, without
explicitly checking for the handshake. For instance, an edge
filter involving packet size being at least 60 bytes filters out
flow-control packets involving only headers, thereby making
it more likely that a valid connection in the direction of data-
flow gets logged. Similarly, ensuring multiple packets have
been seen in a given direction further strengthens that a valid
connection has been established.

The InDegree, OutDegree and InO plots so obtained are
shown in Figures 1-3. It can be noted that the more enriched
edge-filters tend to reduce the noise within the legacy applica-
tions, as is evident with decreasing InO percentages of DNS
and SMTP. However, the general trends of the applications, as
first reported in [6], are indeed present in the TDMs. The InO
stands out as a strong indicator for presence of P2P based ac-
tivity. DNS, with its moderately high InO, comes as a potential
candidate to be misclassified as P2P application. However, its
characterisitic behavior involves a very few supernodes with
very high InDegrees and OutDegrees, as represented with a
very slim bar at the top (100− 999 bin). In contrast, the P2P
supernodes have significantly smaller degrees (less than 99).
This difference in signature was used in [8] where the authors
proposed using a medium average degree of 2.8 along with
high InO to isolate P2P activity.

However, calculating moving average is not trivial in hard-
ware and requires significant logic. We therefore slightly
modify the above rule for classifying P2P activity as: if 20%
of InO nodes are present and there are no nodes in the high
degree bins, then a P2P activity can be declared at a given
port. Given these observations, we now turn our attention on
designing an architecture that can help evaluate the TDMs in
real-time.

IV. SYSTEM DESCRIPTION

A high level diagram of the system is presented in Figure-
4. The design employs two Bloom filters, the flow-filter and
Input-Output filter (InO) and two CBFs, the Source CBF (SC)
and the Destination CBF (DC). There is also a packet-filter
that performs user-defined edge filtering on incoming packets.
The filtered two-tuple {source (si), destination (di)} flows are
forwarded to the controller that uses them at the various filters
and counters to update the statistics.

As discussed earlier, the Bloom Filters (CBFs) efficiently
answer queries like if (or how many times) a key was
programmed. It is however not trivial to use the them to
answer queries like ‘how many of the unique keys have been
programmed?’ or ‘how many keys in the counter have a
count equal to a certain value?’. Our solution to answer such
questions is by maintaining a statistic unit that explicitly stores
answers to these questions. The unit is updated whenever
updates are being made in the filters.

The Statistic Unit (SU) stores scalar as well as vector
quantities. The scalar quantities include the total number of
unique addresses (or nodes) and InO nodes that have been seen
so far. The vector quantities include InDegree and OutDegree
distributions. The bin sizes for the distributions are however
logarithmic to the base of 2, which simplifies their addressing
mechanism in hardware by using simple shift operations.

The part of control algorithm for checking and updating val-
ues in statistics unit due to source-addresses is next presented.
A parallel executing algorithm utilizing destination-address at
the controller is omitted for brevity.

1: for i = 1 to n do
2: if (si, di) /∈ CF then
3: CF ← (si, di)
4: if si /∈ SC then
5: nodes← nodes+ 1
6: end if
7: SC{si} ← SC{si}+ 1
8: addr ← log2{SC{si}}
9: OutDegree{addr} ← OutDegree{addr}+ 1

10: if si ∈ DC and si /∈ InO then
11: InO ← si
12: InO nodes← InO nodes+ 1
13: end if
14: end if
15: end for

The controller first checks the incoming flow (si, di) in the
flow-filter. A successful match in the filter implies a previously
seen edge which is not processed further. However, for a new
flow, its individual addresses are used at CBFs to update
the degrees. A special case of zero degree also implies a
new address which is used for node-count update. Finally,
the incoming addresses are considered for being InO nodes
by checking the respective addresses in opposite CBFs, i.e.
Source address is DC and destination-address in SC. A true
(non-zero degree) in either case signals an InO node. The
originality of the InO node is checked in the InO filter, and
subsequently updated in the InO-filter and SU if not found.

A. Hash Functions

The space efficiency of Bloom filters relies on the universal-
ity of the hash functions, i.e, their equal probability of hashing
into the entire filter independent of data. We use a class of
universal hash functions, H3 as described in [11], that have
been found suitable for hardware designs. Specifically if di
represents the ith data bit ∀i ∈ [1 . . . n] and qlj represents the

Fig. 4. System Architecture

jth bit of a random number in the range [1 . . .m] then the
hash function i can be given as

Hi =< hi
1, h

i
2, h

i
3, . . . , h

i
n >

where

hl
i = ql1.d1 ⊕ ql2.d2 ⊕ . . .⊕ qln.dn

B. Multi-port Embedded Memories

As discussed earlier, the Bloom filters work by using k
hash functions. These hashes can be done serially on a single
big chunk of memory or performed in parallel on multiple
smaller memories. The effect of latter is a negligible change
in the accuracies as discussed in [12]. We therefore employ
multiple-port embedded memories that are partitioned into
smaller chunks, with each having the flexibility to perform
an independent read/write operation.

V. ANALYTICAL EVALUATION FRAMEWORK

The design presented in the last section consists of a number
of Bloom filters and CBFs that rely on one another for the
various statistics being reported. The accuracy of the individual
statistic is thus tied with the accuracies of various filters/CBFs
that lie in the path for the statistic being recorded. For instance,
to identify correctly a new InO node, the incoming flow must
correctly pass through the conversation, degree and InO filters.
A larger filter size at the InO filter may thus not yield as much
improvement in InO accuracy as if the same resources were
invested in degree CBFs. Given a limited resource budget, it is
therefore logical to ask where the design needs to invest more
resources to increase the overall system accuracy. This section
presents an analytical framework that can help in answering
these questions.

We begin by noting that the conversation filter works in
isolation. Thus, its accuracy is entirely dependent on its false
positive rate. Let mi, ni and ki represent the filter size, number
of discrete input keys and hash functions for the conversation
filter (i = 1), degree CBFs (i = 2), and InO filters (i = 3)
respectively. Then the accuracy of correctly identifying a new
flow is given by

Ac = 1− fp1 = 1− (1− e−nik1/m1)k1

The degree count accuracy (Ad) is however tied with the
accuracy of conversation filter along with accuracies of the
CBFs. An address may result in a false degree increment
whenever the conversation filter gives a false edge or even with
a correct edge but there are inaccuracies in the corresponding
counter. Therefore,

Ad = 1− {fp1 + tp1fp2}
Similarly, a new node fails to get counted if its flow gets

matched with an already logged flow in the conversation filter
or if any of the two CBFs falsely match it with another other
node within them. Therefore the node count accuracy can be
given as

An = 1− {fp1 + 2tp1.fp2}
Finally, the InO count is falsely incremented whenever an

incoming node matches the presence test in both the CBFs,
with at least one of them being false. The incoming node has
to pass through the conversation filter and also to be declared
not present by the InO filter. Assuming independence, this can
be given as

Aino = 1− {|(tp1 − fp1)(2fp2tp2 + fp2fp2)(tn3)|}
The question of where to allocate more resources can now be
answered. We first need to establish sufficiently low false rates
in all the filters/CBFs. However, if one has to decide where
to put extra resources, the focus of accuracy may need to be
taken into account. If more attention is to be given to a high
node/degree count accuracy, a low false positive rate of the
conversation filter has to be ensured as a high false positive
at the filter may prevent new nodes from reaching the CBFs.
However, if the focus is InO accuracy, significant resources
also have to be allocated to the CBFs as they are involved in
both false and positive evaluations of the conversation filter.

VI. EMPIRICAL EVALUATION

A. System Throughput

We first explore the throughput of our design. The design’s
throughput is data-dependent because of data-dependencies in
edge and conversation filtering. For instance, a very restrictive
edge-filter may only let a few packets to be processed yielding
a very high system throughput. Similarly, as the flow-filter gets
populated, more and more incoming flows will match in the
filter and therefore not forwarded to later stages, resulting in
an increase in the system throughput.

We test the system throughput using a basic single packet
HTTP filter that ensures maximum number of packets passing

through the flow-filtering stage. Further, we only send HTTP
packets in the trace, thus effectively bypassing positive effects
on throughput by the initial edge-filtering. The results so
obtained are plotted in Figure-5. As expected, the throughput
is steadily increasing with an average throughput of 7.4 million
packets/second. We stress that this is a conservative figure and
in practice, the throughput from our system should be much
better in a mixture of different types of packets.

B. Accuracy Tuning

We now use the observations from the previous section in
tuning the sizes of different filters in the design. We begin by
noting that the flow-filter acts independently and therefore its
false positive rate is entirely dependent on its own parameters
(m1 and k1) and number of input flows (n1). We make use of
equation-3 to compute number of hash functions that guarantee
a sufficiently low false positive rate. We chose the value of
k1 = 8 (yielding fp1 = 0.0039). The number of hash-functions
also represent the number of partitions of the filter as discussed
in section-IV-B. We next turn our attention to evaluating the
size of individual partitions. This is done by using equation-2
that gives us a value of m ≈ 14K for n1 = 10k flows. Since
the partitions on the Xilinx FPGA only come in regular sizes
of power of two, we fix m being 16k. For simplicity, we stick
with 8 hash functions (and thus partitions) for the remaining
filters in the design.

Table-III represents a set of system configurations for ex-
ploring the system performance using different individual filter
sizes along with the resulting total system RAM requirements.
For accuracy measurements, we disable the initial packet filter
since the number of filtered packets were too few to have
a stressful system accuracy evaluation. Like throughput, the
accuracy of the filters is also highly dependent on number
of packets that are already logged in the filters. Figure-6 and
Figure-7 present the accuracy plots with number of packets
in the system. The final accuracy values are also tabulated in
Table-III.

The plots demonstrate the dependency of accuracy of our
design with number of packets seen so far. The first config-
uration of Table-III has minimal memory requirements but
fares poorly in accuracies, in particular the InO accuracy. We
therefore use our insights from previous section and double the
size of CBFs in the second configuration. The change results in
more than 3x improvement in InO accuracy, despite reduction
in the sizes of other filters. We next focus on increasing
node count accuracy. The third configuration achieves this by
doubling the flow filter size. To see the effects on node count
accuracy due solely to the size of the CBFs, we go back to
the second configuration and increase the counter size in the
fourth configuration. We note that the change has less effects
on node count accuracy than to the InO accuracy, thereby
confirming to our earlier observations from previous section.
The other configurations further explore the design space. We
select configuration C − 8 as our final system configuration,
offering a high amount of accuracy with a decent area-budget.

No. Conv Filter InO Filter Degree Ctrs Total Node Count InO Count
x8 (Kb) x8 (Kb) x2x8x8 (Kb) (Kb) Accuracy Accuracy

C-1 16 16 2 512 71.78 27.35
C-2 8 8 4 640 88.31 85.75
C-3 16 8 4 704 92.14 81.07
C-4 8 8 8 1152 90.13 99.18
C-5 16 8 8 1216 94.46 100
C-6 32 8 8 1344 96.95 99.34
C-7 32 4 8 1344 99.95 99.34
C-8 32 1 8 1312 96.95 99.34
C-9 32 16 16 2432 99.98 99.67

TABLE III
SYSTEM EVALUATION

Metric Value Device Utilization
IO Pins 69 14.4%

Number of occupied Slices 754 10%
Number of Block-RAMs 44 73%

Clock (MHz) 107 -

TABLE IV
IMPLEMENTATION RESULTS

0

1

2

3

4

5

6

7

8

9

10

T
h

ro
u

g
h

p
u

t
(M

il
li

o
n

s
o

f
P

a
ck

e
ts

/S
e

c)

Number of Packets

Throughput Average

Fig. 5. System Throughput

0

10

20

30

40

50

60

70

80

90

100

1
0
0

7
0
0

1
3
0
0

1
9
0
0

2
5
0
0

3
1
0
0

3
7
0
0

4
3
0
0

4
9
0
0

5
5
0
0

6
1
0
0

6
7
0
0

7
3
0
0

7
9
0
0

8
5
0
0

9
1
0
0

9
7
0
0

A
c
c
u

ra
c
y

Number of Packets

C-1

C-2

C-3

C-4

C-8

Fig. 6. Node Count Accuracy

0

10

20

30

40

50

60

70

80

90

100

1
0
0

7
0
0

1
3
0
0

1
9
0
0

2
5
0
0

3
1
0
0

3
7
0
0

4
3
0
0

4
9
0
0

5
5
0
0

6
1
0
0

6
7
0
0

7
3
0
0

7
9
0
0

8
5
0
0

9
1
0
0

9
7
0
0

A
c
c
u

ra
c
y

Number of Packets

C-1

C-2

C-3

C-4

C-8

Fig. 7. InO Count Accuracy

C. Prototype Implementation

We prototyped our design on Virtex-5, XC5V LX50t de-
vice using Xilinx ISE 11.1. Table-IV shows the prototype
results. The device incorporates 60, 32k Block-RAMs that
were used to map the Bloom filters/CBFs in the design. It
can be noticed that bulk of the device consumption is due
to the filters whereas the associated logic itself takes quite
minimal die-resources. This shows that the device can be
further utilized in implementing more richer set of edge-filters
and alarm rules for various other kinds of applications using
the same TDMs.

VII. CONCLUSION

The paper presented a novel FPGA based solution for real-
time collection of metrics involving Traffic Dispersion Graphs
(TDGs). The TDGs have been shown to offer insights for
network traffic analysis but there has not been a concentrated
effort in their real-time online evaluation. We analyzed the
metrics presented in the literature with the focus on their
online evaluation. We used our analysis in a Bloom filter based
solution and evaluate its efficiency using analytical and em-
pirical means. The presented solution enabled real-time online
evaluation of TDGs, processing 7.4 million packets/second for
a TDG comprising of 10k flows at very high accuracies of over
96%.

REFERENCES

[1] J. Erman, A. Mahanti, and M. Arlitt, “Byte me: a case for byte accuracy
in traffic classification,” in MineNet ’07: Proceedings of the 3rd annual
ACM workshop on Mining network data, 2007, pp. 35–38.

[2] T. Karagiannis, A. Broido, M. Faloutsos, and K. claffy, “Transport layer
identification of P2P traffic,” in IMC ’04: Proceedings of the 4th ACM
SIGCOMM conference on Internet measurement, 2004, pp. 121–134.

[3] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic classification
through simple statistical fingerprinting,” SIGCOMM Comput. Commun.
Rev., vol. 37, no. 1, pp. 5–16, 2007.

[4] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic
feature distributions,” in SIGCOMM ’05: Proceedings of the 2005
conference on Applications, technologies, architectures, and protocols
for computer communications, 2005, pp. 217–228.

[5] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel
traffic classification in the dark,” in SIGCOMM ’05: Proceedings of
the 2005 conference on Applications, technologies, architectures, and
protocols for computer communications, 2005, pp. 229–240.

[6] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh,
and G. Varghese, “Network monitoring using traffic dispersion graphs
(TDGS),” in Proceedings of the 7th ACM SIGCOMM Internet Measure-
ment Conference, 2007, pp. 315–320.

[7] Y. Jin, E. Sharafuddin, and Z.-L. Zhang, “Unveiling core network-
wide communication patterns through application traffic activity graph
decomposition,” in SIGMETRICS ’09: Proceedings of the eleventh in-
ternational joint conference on Measurement and modeling of computer
systems, 2009, pp. 49–60.

[8] M. Iliofotou, H.-c. Kim, M. Faloutsos, M. Mitzenmacher, P. Pappu,
and G. Varghese, “Graph-based P2P traffic classification at the internet
backbone,” in INFOCOM’09, 2009, pp. 37–42.

[9] M. Iliofotou, M. Faloutsos, and M. Mitzenmacher, “Exploiting dynam-
icity in graph-based traffic analysis: Techniques and applications,” in
ACM CoNEXT. New York, NY, USA: ACM, December 2009.

[10] F. Khan, L. Yuan, C.-N. Chuah, and S. Ghiasi, “A programmable
architecture for scalable and real-time network traffic measurements,” in
ANCS ’08: Proceedings of the 4th ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems, 2008, pp. 109–118.

[11] M. Ramakrishna, E. Fu, and E. Bahcekapili, “A performance study of
hashing functions for hardware applications,” in In Proc. of Int. Conf.
on Computing and Information, 1994, pp. 1621–1636.

[12] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W. Lockwood,
“Deep packet inspection using Parallel Bloom Filters,” IEEE Micro,
vol. 24, no. 1, pp. 52–61, 2004.

